
Day 07 - The Command Line Interface (CLI)Day 07 - The Command Line Interface (CLI)

Sept. 29, 2020Sept. 29, 2020

From Pre-Class AssignmentFrom Pre-Class Assignment
There are a variety of experiences across our class:

Some have never used the CLI while some use it daily.

Challenging bitsChallenging bits
Unable to get the CLI commands to work
What are these commands doing; how to remember them all
Getting vim and nano to work properly

Why use the CLI at all?Why use the CLI at all?
Not all data science work can be done using a Graphical User Interface (GUI)
Installing and con�guring packages, libraries, and modules are typically done via CLI
Using the CLI is typically more ef�cient than the equivalent GUI approach
Interfacing with other systems through CLI ensures similarity across systems
Many production computing systems provide no GUI at all

Your future workYour future work
Right now, you do all your computations on your own computer or on EGR's JupyterHub. In
the future, you might:

Work for a data science �rm with its own computational systems
Use cloud computing resources for analysis and modeling
Administer high performance computing systems for a team of data scientists
...

These kinds of production systems typically make use of a client-server relationship.

MSU Institute for Cyber-Enabled Research (ICER)MSU Institute for Cyber-Enabled Research (ICER)

900 compute nodes with more than 23,000 cores
142 TB of RAM
6.5 PB of persistent storage

CLI is used to access ICER resources.

Structure of a typical CLI commandStructure of a typical CLI command
command -f variable(s) - The command is the main action you are attempting.

The �ag (-f) is a modi�er that slightly changes the action. The variable(s) is/are

passed to the action.
Many CLI commands execute without any visual feedback.

CLI commands that you will use dailyCLI commands that you will use daily
ls - lists the contents of a directory (ls -a modi�es the command to list all �les

including hidden ones).
pwd - prints the working directory to screen (shows where you are)

cd <directory> - changes the working directory (moves you to a different

location)
mkdir <new_directory> - creates a new directory (must have name that doesn't

yet exist in the working directory)
touch <new_file> - creates a new blank �le (again, must have a name that

doesn't yet exist)
cp <file> <new_file> - copies a �le to a new �le (will overwrite <new_file>
with telling you)
cp -r <directory> <new_directory> - the -r �ag means recursive; copies

full contents of a directory

Editing text �lesEditing text �les

Why did we introduce Why did we introduce vim and and nano??
To make edits to the kinds of �les used in data science, we need plain text editors. MS Word,
Google Docs, and the like make binary �les; they contain additional metadata and markup
for origin, formatting, et cetera.

vim and nano are the most commonly available CLI plain text editors.

I'd be more comfortable with a GUII'd be more comfortable with a GUI
There are a number of text editors that make use of a GUI, which might be more
comfortable right now.

 - Windows, Mac, Linux
 - Windows, Mac, Linux

 - Windows, Mac
 - Windows

 - Mac
 - Mac

Some of these can be set up as programming environments. For example, Danny uses Atom
almost exclusively.

Atom (https://atom.io/)
Sublime Text (https://www.sublimetext.com/)
Visual Studio Code (https://code.visualstudio.com/)
Notepad++ (https://notepad-plus-plus.org/)
TextMate (https://macromates.com/)
BBEdit (https://www.barebones.com/products/bbedit/)

https://atom.io/
https://www.sublimetext.com/
https://code.visualstudio.com/
https://notepad-plus-plus.org/
https://macromates.com/
https://www.barebones.com/products/bbedit/

Questions, Comments, Concerns?Questions, Comments, Concerns?

